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A factory produces components. Each component has a unique identity number and it
is assumed that 2% of the components are faulty. On a particular day, a quality control
manager wishes to take a random sample of 50 components.

(a) Tdentify a sampling frame. -

The statistic F* represent
size 50.

(b) Specify the sampling distribution of F. @
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A traffic officer monitors the ratc at which vehicles pass a fixed point on a motorway.
When the rate exceeds 36 vehicles per minute he must switch on some speed restrictions
to improve traffic flow.

(a) Suggest a suitable model to describe the number of vehicles passing the fixed point
ina 15 s interval.
(1)
The traffic officer records 12 vehicles passing the fixed point in a 15 s interval.
(b) Stating your hypotheses clearly, and using a 5% level of significance, test whether or
not the traffic officer has sufficient evidence to switch on the speed restrictions.
(6)
(¢) Using a 5% level of significance, determine the smallest number of vehicles the traffic

officer must observe in a 10 s interval in order to have sufficient evidence to switch
on the speed restrictions.
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In a game, players sclect sticks at random from a box containing a large number of sticks
of different lengths. The length, in cm, of a randomly chosen stick has a continuous
uniform distribution over the interval [7, 10].

A stick is selected at random from the box.

(a) Find the probability that the stick is shorter than 9.5 cm.

&)

To win a bag of sweets, a player must sclect 3 sticks and wins if the length of the longest
stick is more than 9.5 cm.

(b) Find the probability of winning a bag of sweets.
)

To win a soft toy, a player must select 6 sticks and wins the toy if more than four of the
sticks arc shorter than 7.6 ¢m.

(c) Find the probability of winning a soft toy.
@
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Figure 1

Figure 1 shows a sketch of the probability density function f(x) of the random variable X.

For 0< x <3, f(x) is represented by a curve OB with equation f(x)=kx’, where kis a
constant.

For 3 < x < a, where ais a constant, f(x) is represented by a straight line passing through
B and the point (a, 0).

For all other values of x, f(x)=0.
Given that the mode of X = the median of X, find

(a) the mode,

@
(b) the value of k,

)
(c) the value of a.

3)
Without calculating E(X') and with reference to the skewness of the distribution
(d) state, giving your reason, whether E(X) <3, E(X)=3 or E(X) > 3.
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Question 3 continued
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5. Defects occur at random in planks of wood with a constant ratc of 0.5 per 10 ¢m length.
Jim buys a plank of length 100 cm.

(a) Find the probability that Jim’s plank contains at most 3 defects.
2)

Shivani buys 6 planks cach of length 100 em.

‘| (b) Find the probability that fewer than 2 of Shivani’s planks contain at most 3 defeets.
(5)

(c) Using a suitable approximation, estimate the probability that the total number of
defects on Shivani’s 6 planks is less than 13.
(6)
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A shopkeeper knows, from past records, that 15% of customers buy an item from the
display next to the till. After a refurbishment of the shop, he takes a random sample of 30
customers and finds that only 1 customer has bought an item from the display next to the
till.

{a) Stating your hypothescs clearly, and using a 5% level of significance, test whether or
not there has been a change in the proportion of customers buying an item from the

display next to the till.
(6)

During the refurbishment a new sandwich display was installed. Before the refurbishment
20% of customers bought sandwiches. The shopkecper claims that the proportion of
customers buying sandwiches has now increased. He selects a random sample of 120
customers and finds that 31 of them have bought sandwiches.

(b) Using a suitable approximation and stating your hypotheses clearly, test the
shapkeeper’s claim. Use a 10% level of significance.
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The continuous random variable X has probability density function given by

3

£ = E(Jc—l)(S—x) 1<x<5

0 otherwise

(a) Sketch f(x) showing clearly the points where it meets the x-axis.
(b) Write down the value of the mean, p, of X.

(c) Show that E(X*)=9.8

(d) Find the standard deviation, o, of X.

The cumulative distribution function of X is given by

0 x<1
F(x)= IZ(H 15x +9x7 —x) 1<x<5

| x>5

where @ is a constant.

(e¢) Find the value of a.

(f) Show that the lower quartile of X, ¢,, lies between 2.29 and 2.31

(2) Hence find the upper quartile of X, giving your answer to 1 decimal place.

(h) Find, to 2 decimal places, the value of & so that
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